Рыбы


Рыбы (лат. Pisces) — надкласс (в соответствии с современными принципами кладистики — парафилетическая группа) водных позвоночных животных. Обширная группа челюстноротых, для которых характерно жаберное дыхание на всех этапах постэмбрионального развития организма. Рыбы распространены как в солёных, так и в пресных водах, от глубоких океанических впадин до горных ручьев. Рыбы играют важную роль в большинстве водных экосистем как составляющая пищевых цепей. Они имеют большое экономическое значение для человека из-за употребления их в пищу.
Размеры современных рыб варьируют от 7,9 мм (Paedocypris progenetica) до 13,7 м (китовая акула).
В мире известно, по разным данным, от 25 000 до 31 000 видов рыб.
Изучению рыб посвящён раздел зоологии — ихтиология. Ввиду важности изучения и большого экономического значения рыб в некоторых вузах (например, на биологическом факультете МГУ) есть, наряду с кафедрами зоологии позвоночных, отдельные кафедры ихтиологии.

Анатомия и физиология


Внешние покровы


За редкими исключениями, внешние покровы рыб представлены кожей с чешуёй (у некоторых рыб чешуя отсутствует). Как и у всех других позвоночных, кожа рыб делится на дерму и эпидермис (верхний слой кожи эктодермального происхождения, состоящий из эпителиальной ткани). Эпидермис у рыб неороговевающий. Железы в эпидермисе секретуют мускусоподобный секрет, который защищает внешние покровы животного.

В формировании чешуи основную роль играет внутренний слой кожи — эпидермис. Хрящевые рыбы имеют плакоидную чешую, которая гомологична зубам всех позвоночных; перемещаясь в ходе эволюции на челюсти, плакоидные чешуи, собственно, и превращаются в зубы у акул и скатов. Плакоидная чешуя состоит из дентина, который формирует основу чешуй, а сверху покрыта эмалью. По химическому составу дентин и эмаль акул сходны с дентином и эмалью зубов человека. Утраченные плакоидные чешуи не возобновляются, но при росте рыбы их количество увеличивается. Плавниковые шипы некоторых хрящевых рыб (например, у черноморского катрана) тоже являются преобразованными плакоидными чешуями.

Костистым рыбам присуще несколько разных типов чешуи.



Ганоидная чешуя имеется у наиболее примитивных из лучепёрых рыб, например, осетровых. Она сформирована костяными пластинками, которые сверху покрыты пластом похожего на дентин вещества — ганоина; часто такая чешуя покрывает тело рыбы сплошным защитным панцирем, как у представителей семейств Polypteridae и Lepisosteidae.

Для ископаемых кистеперых и двоякодышащих рыб, а также для современных кистеперых рыб характерная космоидная чешуя, внешняя поверхность которой образована пластом космина (откуда происходит название), а сверх него — дентина. Космин подстилается пластом губчатой кости. У современных видов кистеперых и двоякодышащих рыб внешний дентиновый и внутренний губчатый пласты постепенно редуцируются — у современных видов рода Латимерия на поверхности чешуи сохранились лишь одиночные бугорки дентина.

Чешуя настоящих костистых рыб называется эласмоидной и делится на две разновидности: ктеноидную (зубчатую) и циклоидную (округлую) на основании формы внешней кромки. В отличие от большинства подвидов плакоидных и ганоидних чешуй, циклоидные и ктеноидные расположены так, что передние накладываются на задние, а сами чешуйки анатомически являются тонкими костными пластинками; в последнее время было установлено, что гребенчатая поверхность ктеноидной чешуи улучшает гидродинамические свойства рыб.


Окраска рыб может варьировать в очень широких пределах: от однотонной практически всех возможных цветов до маскировочной «камуфляжной» или, наоборот, подчеркнуто яркой «предупреждающей».


Скелет и мышечная система



Опорно-двигательная система рыб — система органов и тканей рыб, которая позволяет им осуществлять движения и корректировать свое положение в окружающей среде. Благодаря эволюционным видоизменениям части опорно-двигательной системы приспособлены для выполнения также и других специализированных функций.

В отличие от наземных позвоночных, имеющих череп с большим количеством сращённых костей, череп рыб содержит более чем 40 костных элементов, которые могут двигаться независимо. Это позволяет осуществлять вытягивание челюстей, раздвигание челюстей в стороны, опускать жаберный аппарат и дно ротовой полости.

Подвижные элементы прикрепляются к более жестко сочленённому нейрокраниуму, который окружает головной мозг. Нейрокраниум костных рыб в эволюции возникает из хрящевого черепа хрящевых рыб, к которому прирастают кожные костные пластинки.

Челюсти в классах костных и хрящевых рыб эволюционно образовались из третьей пары жаберных дуг (о чем свидетельствуют рудименты первых двух пар дуг у акул — так называемые губные хрящи). У костистых рыб челюсти несут основные группы зубов на переднечелюстной (premaxilla) и верхнечелюстной костях (maxilla) (верхняя челюсть), на dentale и articulare (нижняя челюсть). Несколько специализированных групп костей формируют дно ротовой полости и объединяют челюсти с другими элементами черепа. Наиболее рострально (впереди) расположенная гиоидная дуга, которая играет важную роль при изменении объема ротовой полости. За ней идут жаберные дуги, которые несут жаберные дыхательные структуры, и наиболее каудально расположены так называемые глоточные челюсти, которые также могут нести зубы.
Во время питания мышцы, которые опускают комплекс нижней челюсти, смещают этот комплекс таким образом, что челюсти выдвигаются вперед. При этом в ротовой полости создаётся всасывающая сила за счёт опускания дна рта. Жаберные крышки при этом закрывают жабры. Такая комбинация движений приводит к всасыванию воды и затягиванию пищи в рот.
Движущая сила при плавании рыб создаётся плавниками: парными (грудные и брюшные) и непарными  (спинной, анальный, хвостовой). При этом у костных рыб плавники состоят из костных (у некоторых примитивных — из хрящевых) лучей, объединенных перепонкой. Присоединённые к основным лучам мышцы могут разворачивать или свертывать плавник, изменять его ориентацию или генерировать волнообразные движения.Хвостовой плавник, который у большинства рыб является основным движителем, поддерживается набором специальных сплюснутых костей (уростиль и др.) и ассоциированных с ними мышц в дополнение к боковым мышцам туловища. По соотношению размеров верхней и нижней лопасти хвостовой плавник может быть гомоцеркальным (когда обе лопасти имеют равную величину; это характерное для большинства лучепёрых рыб) или гетероцеркальным (когда одна лопасть, обычно верхняя, больше другой; характерное для акул и скатов, а также осетровых; у таких представителей костных рыб как меченосцы хвостовой плавник гетероцеркальный с большей нижней лопастью).
Позвоночник рыб состоит из отдельных, не сращённых позвонков. Позвонки рыб амфицельные (то есть их обе торцевые поверхности вогнутые), между позвонками находится хрящевая прослойка; невральные дуги, расположенные сверху над телами позвонков, формируют позвоночный канал, защищающий спинной мозг. Позвоночник делится на два отдела — туловищный и хвостовой. От позвонков, которые находятся в туловище, в стороны отходят рёберные отростки, к которым прикрепляются рёбра. В хвостовом отделе позвоночника боковых отростков на позвонках нет, зато кроме невральной дуги имеется сосудистая (гемальная) дуга, которая прикрепляется к позвонку снизу и защищает проходящий в ней большой кровеносный сосуд — брюшную аорту. От невральных и гемальных дуг вертикально вверх и вниз отходят заострённые остистые отростки.
По правую сторону и левую сторону от позвоночника отходит мембрана из соединительной ткани, которая называется горизонтальной септой (перегородкой) и разделяет мышцы тела рыбы на дорсальную (верхнюю) и вентральную (нижнюю) части, которые называются миомерами.
Плавание рыб осуществляется благодаря сокращению мышц, которые объединены сухожилиями с позвоночником. Миомеры в теле рыбы имеют форму конусов, вложенных один в один и разделенных перегородками соединительной ткани (миосептами). Сокращение миомеров через сухожилие передается на позвоночник, побуждая его к волнообразному движению (ундуляции) по всей длине тела или лишь в хвостовом отделе.
В целом мускулатура рыб представлена двумя типами мышц. «Медленные» мышцы используются при спокойном плавании. Они содержат много миоглобина, который обуславливает их красный цвет. Метаболизм в них в основном аэробный, то есть в них происходит полное окисление питательных веществ. Такие красные мышцы могут долго не утомляться, и потому используются при длинном монотонном плавании. В отличие от красных, «быстрые» белые мышцы с преимущественно гликолитичным метаболизмом способны к быстрому, но кратковременному сокращению. Они используются при быстрых внезапных рывках; при этом они могут давать большую, чем красные мышцы, мощность, но быстро утомляются.
Также у многих рыб мышцы могут выполнять и некоторые другие функции, кроме движения. У некоторых видов они участвуют в терморегуляции (термогенезе). У тунцов благодаря активности мускулатуры температура мозга поддерживается на более высоком уровне, чем температура других частей тела, когда тунцы охотятся на кальмаров в глубоких холодных водах.
Электрические токи, которые генерируются при сокращении мышц, используются слонорылом как коммуникационный сигнал; у электрических скатов электрические импульсы, генерированные видоизмененными мышцами, используются для поражения других животных. Модификация мышечных клеток для выполнения функции электрической батареи эволюционно происходила независимо и неоднократно в разных таксонах: глазных мышц у рыб-звездочётов, жевательной мускулатуры (электрические скаты) или осевой мускулатуры (электрические угри).

Нервная система и органы чувств


Головной мозг рыб принято делить на три большие части: передний, средний и задний мозг. Передний мозг состоит из конечного мозга и промежуточного мозга. На ростральном (переднем) конце конечного мозга расположены обонятельные луковицы, которые получают сигналы от обонятельных рецепторов. Обонятельные луковицы обычно увеличены у рыб, которые активно используют нюх, например, у акул. В крыше среднего мозга находятся оптические доли. Задний отдел подразделяется на собственно задний мозг (к нему относится мост и мозжечок) и продолговатый мозг. Таким образом, у рыб, как и у других позвоночных, имеется пять отделов головного мозга (спереди назад): конечный, промежуточный, средний, задний и продолговатый.

Спинной мозг проходит внутри нервных дуг позвонков по всей длине позвоночника рыбы. Аналогично миомерам и позвоночнику, в строении спинного мозга наблюдается сегментация. В каждом сегменте тела сенсорные нейроны входят в спинной мозг через дорсальные корешки, а двигательные нейроны выходят из него через вентральные.

Глаза рыб по своему строению очень схожи с глазами других позвоночных. Важное отличие глаза рыб от глаза млекопитающих заключается в том, что для аккомодации рыбы не изменяют кривизну хрусталика, а приближают его к сетчатке или отдаляют от нее. Структура сетчатки у рыб варьирует в зависимости от места их обитания: у глубоководных видов глаза приспособлены для восприятия света преимущественно красной части спектра, а рыбы, которые живут на мелководье, воспринимают более широкий спектр.
Обоняние и вкус позволяют рыбам ориентироваться в химическом составе окружающей среды. Способность рыб к ощущению химических сигналов хорошо иллюстрируют лососи, которые, идя на нерест из моря к речным системам, определяют по запаху воды именно тот ручей или реку, в котором когда-то сами вышли из икры. Обонятельные рецепторы рыб расположены в ноздрях. Они, в отличие от ноздрей других позвоночных, не соединяются с носоглоткой (хоаны есть только у двоякодышащих рыб). Вкусовые рецепторы у многих рыб есть не только в ротовой полости, но и на жаберных структурах, усиках и даже плавниках и просто на поверхности тела.
Механорецепторы рыб содержатся во внутреннем ухе (парные органы слуха и равновесия), а также органах боковой линии. Внутреннее ухо пластиножаберных (акул и скатов) и костистых рыб состоит из трех полукружных каналов, расположенных в трёх взаимно перпендикулярных плоскостях, и трёх камер, каждая из которых содержит отолиты. Некоторые виды рыб (например, серебряный карась и разные виды сомов) имеют комплекс косточек (веберов аппарат), соединяющий ухо с плавательным пузырем. Благодаря этой адаптации внешние вибрации усиливаются плавательным пузырем, как резонатором. Отолит в третьей камере обеспечивает рыбе ориентацию в пространстве.
Перемещение воды по поверхности рыбы ощущается структурами, которые называются нейромасты. Эти органы могут быть рассеяны поодиночке, или собраны под чешуёй в совокупности каналов, которые называются боковой линией. Нейромасты включают полушарие гелевой консистенции (капулу) и сенсорные волосовидные клетки, а также синапсы нервных волокон, которые находятся на волосовидных клетках. Перемещение воды служит причиной отгиба волосовидных клеток, который создаёт нервные импульсы. Эти импульсы позволяют составить довольно подробную картину окружающей среды: некоторые виды рыб, лишённые глаз, целиком ориентируются и перемещаются, полагаясь только на органы боковой линии.
Ощущение электрического поля — электрорецепция — присуще многим видам рыб — не только тем, которые могут сами генерировать электрические разряды. Электрические сигналы улавливаются с помощью специальных ямок на поверхности тела. Эти ямки заполнены гелеподобным веществом, которое проводит электрический ток и содержит в себе электрорецепторные клетки, которые образуют синапсы с нейронами.

Кровеносная система и газообмен


У рыб один круг кровообращения и двухкамерное сердце. Кровеносная система замкнутая, транспортирует кровь от сердца через жабры и ткани тела. В отличие от сердца других позвоночных, сердце рыб не приспособлено для разделения (даже частичного) обогащенной кислородом крови (артериальной) от необогащённой (венозной). Структурно сердце рыб представляет собой последовательную серию из камер, заполненных венозной кровью: венозный синус, предсердие, желудочек и артериальный конус. Камеры сердца разделены клапанами, которые позволяют крови при сокращении сердца двигаться только в одном направлении (от венозного синуса к артериальному конусу), но не наоборот.

Основным органом газообмена рыб являются жабры, которые расположены по сторонам ротовой полости. У костистых рыб они закрыты жаберной крышкой, у других классов — свободно приоткрываются наружу. Во время вентиляции жабр вода попадает в ротовую полость через рот, а потом проходит между жаберными дугами и выходит наружу из-под жаберных крышек. Анатомически жабры состоят из полупроницаемых мембран и кровеносных сосудов, которые расположены на костных жаберных дугах. Специфической структурой, приспособленной для газообмена, являются жаберные лепестки, где под тонким эпителием находятся сильно разветвленные капилляры.

В дополнение к жабрам рыбы могут использовать и другие способы газообмена. На стадии личинки значительная часть газообмена осуществляется через кожу; несколько видов рыб имеют «легкие», где сохраняется увлажнённый воздух (амия); некоторые виды могут дышать воздухом непосредственно (гурами).



Пищеварительная система и питание



Пищу захватывают и удерживают зубами (обычно недифференцированными), находящимися во рту. Изо рта через глотку, и, далее, через пищевод, пища попадает в желудок, где подвергается обработке ферментами, содержащихся в желудочном соке. После желудка пища попадает в тонкую кишку с протоками печени и поджелудочной железы, а оттуда через анальное отверстие или клоаку, у некоторых видов, выводятся наружу непереработанные остатки пищи.

Рыбам присущ широкий спектр пищевых объектов и способов питания. В целом все рыбы могут быть разделены на травоядных, хищников, детритофагов и всеядных. Растительноядные рыбы могут питаться как макро-, так и микроводорослями, а также водными цветочными растениями. Некоторые из таких рыб приспособлены к питанию планктоном, фильтруя его специализированными жаберными тычинками на жаберных дугах: например, разные виды толстолобиков (Hypophthalmichthys molitrixHypophthalmichthys nobilis) питаются исключительно за счёт этого ресурса и являются строго определенными рыбами-фильтраторами микроскопических водорослей, которые живут в толще воды. Морские рыбы из семейства Pomacentridae питаются бентосными макроводорослями, причем каждая рыба имеет определенный участок, где она вырывает все водоросли, оставляя для роста только те виды, которыми питается — при этом не вырывая их во время питания, а лишь частично объедая.
Хищные рыбы используют в качестве пищевого ресурса широчайший спектр объектов. Планктонные фильтраторы (такие как китовая акула) отфильтровывают зоопланктон из толщи воды; кроме того, рыбы могут питаться ракообразными, моллюсками, плоскими, круглыми и кольчатыми червями, а также другими рыбами. Наиболее специализированными из хищных рыб являются те, которые питаются эктопаразитами других рыб (Labridae, Chaetodontidae и прочие), которые выбирают паразитов и отмершие кусочки кожи с поверхности тела рыб-«клиентов», которые специально посещают места обитания «чистильщиков».
Многие виды рыб изменяют тип питания на протяжении жизни: например, в молодом возрасте питаются планктоном, а позже — рыбами или крупными беспозвоночными

Выделительная система и осморегуляция


Проживание в водной среде приводит к ряду проблем с осморегуляцией, с которыми сталкиваются как пресноводные, так и морские рыбы. Осмотическое давление крови рыб может быть как ниже (у солоноводных рыб), так и выше (у пресноводных), чем осмотическое давление внешней среды. Хрящевые рыбы — изоосмотические, но при этом в их организме концентрация солей намного ниже, чем в окружающей среде. Выравнивание осмотического давления при этом достигается благодаря повышенному содержанию мочевины и триметиламиноксида (ТМАО) в крови. Поддержание низкой концентрации солей в организме хрящевых рыб осуществляется благодаря выделению солей почками, а также специализированной ректальной железой, которая соединяется с пищеварительным трактом. Ректальная железа концентрирует и выводит как ионы натрия, так и хлорид-ионы из крови и тканей организма.

Костистые рыбы не являются изоосмотическими, поэтому в ходе эволюции выработали механизмы, которые позволяют осуществлять вывод или задержку ионов. Морские костистые рыбы с низкой (относительно окружающей среды) концентрацией ионов в организме постоянно теряют воду, которая под действием осмотического давления выходит из их тканей наружу. Эти потери компенсируются за счет питья и фильтрации соленой воды. Катионы натрия и хлорид-ионы выводятся из крови через жаберные мембраны, в то время как катионы магния и сульфатные анионы выводятся почками. Пресноводные рыбы сталкиваются с противоположной проблемой (поскольку у них концентрация солей в организме выше, чем в окружающей среде). Осмотическое давление у них выравнивается благодаря захвату ионов из водной среды через жаберные мембраны, а также благодаря выделению большого количества мочевины.

Размножение



Типы размножения


Двуполое размножение


Двуполое размножение — наиболее обычная и распространённая его форма. При этом способе репродукции оба пола чётко разделены. У некоторых видов очень ярко выражены вторичные половые признаки, и наблюдается половой диморфизм. Эти характеристики вторичных половых признаков обычно проявляются только одним полом (в большинстве случаев — самцами), не относятся к половому созреванию, могут интенсифицироваться на протяжении брачного сезона, не оказывают содействие индивидуальному выживанию. Вторичные половые признаки могут проявляться в виде различий в размерах тела, частей тела (например, удлинённые плавники), строения тела (например, выросты на голове), расположении зубов, окраске, а также встречаются в виде отличий между акустическими, химическими, электрическими и другими характеристиками самцов и самок. Двуполый способ размножения может включать в себя моногамию, полигамию и промискуитет.

Гермафродитизм


У рыб-гермафродитов пол может меняться в течение жизни: они функционируют то как мужская, то как женская особь (случайно или последовательно). Есть две формы последовательного изменения пола — протоандрия и протогения. Протоандрические гермафродиты — это особи, которые в начале своей жизни являются самцами, а позднее претерпевают кардинальные перестройки половой системы и становятся полностью функциональными самками. Такая форма преобразования пола широко распространена в семействе морских окуней (Serranidae). Все губаны (Labridae) являются протогеническими гермафродитами, когда все самцы являются преобразованными с возрастом самками. В этом семействе на смену пола могут влиять как факторы окружающей среды, так и социальные отношения в популяции. Социальная структура губанов заключается в наличии гаремов, которые состоят из самок и одного большого самца. Внутри группа структурирована по размеру, с самцом на верхушке иерархии. Если изъять из группы самку, другие самки (низшие по рангу) будут изменять свое иерархичное положение, обычно сдвигаясь на одну позицию вверх. Если же изъять из группы самца, самая крупная самка гарема старается занять его место, агрессивно отгоняя самцов, которые контролируют другие гаремы. Если ей это удаётся, и никому из окружающих самцов не удается присоединить этот гарем к собственному, то эта самка начинает демонстрировать поведение самца, и после около 14 дней ее половая система полностью изменяется, начиная продуцировать мужские половые клетки.

В таксонах, где половая принадлежность обусловлена социальной структурой, процесс изменения пола широко варьирует, и одна и та же особь может изменять пол несколько раз на протяжении жизни. С другой стороны, существуют таксоны (например, полосатые окуни, желтый окунь, большинство групперов) где половая принадлежность особей чередуется, но не испытает влияние социальной структуры. Случайные гермафродиты могут продуцировать как яйцеклетки, так и сперматозоиды — они потенциально имеют возможность самооплодотворения. Известные лишь три вида из отряда Cyprinodontiformes, которые функционируют как самооплодотворяющие гермафродиты: два вида рода Cynolebias и видRivulus marmoratus. При этом самооплодотворение у Rivulus marmoratus является внутренним, и в результате приводит к появлению гомозиготных, генетически идентичных потомков. Более обычная форма случайного гермафродитизма наблюдается в родах Hypoplectrus и Serranus семейства Окунёвых (Percidae). Хотя эти рыбы способны продуцировать сперматозоиды и яйцеклетки одновременно, на протяжении одного нереста они функционируют как представители только одного пола. Учитывая то, что один акт нереста может длиться несколько часов, рыбы одной пары могут обмениваться половыми ролями, и продуцировать поочередно яйцеклетки (икру) или сперматозоиды (молоки).

Партеногенез

Несмотря на редкость этого типа размножения среди позвоночных, несколько видов рыб прибегают к нему. По определению, партеногенез заключается в развитии яйца без оплодотворения сперматозоидом этого же вида. У рыб существует вариант этого типа размножения, при котором необходимым является общий нерест с самцами того же самого вида или других видов. При этом роль самцов заключается в продуцировании сперматозоидов, которые контактируют с икринками, но не в состоянии проникнуть через их внешнюю мембрану (хорион). Контакт со сперматозоидами выполняет роль стимула, который побуждает яйцо начать развитие. При этом сперматозоиды не вносят в яйцо своего генетического материала, то есть все потомки при таком размножении будут самками, генетически идентичными с материнской особью. Классические примеры такого гермафродитизма — гольяны(род Poeciliopsis) и европейский серебряный карась Carassius gibelio.

Информация взята с сайта  www.wikipedia.org


.







2 комментария:

  1. Я заметила, что не вся информация взята из википедии. Кое-что вы не добавили на этот сайт. Почему?

    ОтветитьУдалить
    Ответы
    1. Дело в том, что блог долго грузится (по крайней мере у меня). Поэтому я решил лишнюю на мой взгляд информацию не включать на страницы сайта.

      Удалить